下世代鋰離子電池負極電極材料奈米結構技術

陳貴賢¹, 包淳偉², 顏宏儒³, 吳恆良⁴, 方家振⁵

1中央研究院原分研究所,2中央研究院應科中心,3中央研究院化學所,4臺灣大學凝態科學研究中心,5工業技術研究院材化所

Abstract

Global demand for rechargeable lithium-ion batteries has grown tremendously over the past two decades. However, lithium-ion batteries lack the higher capacity and longer life time required in electric vehicles and electricity infrastructure. In order to improve the energy density and extend the cycle life of batteries, we propose to develop the novel anode materials with advanced nanostructures. Our study includes: (a) the development of flower-like Cu₂ZnSnS₄ (CZTS) nanoflakes, polyimides and 2D nanographene anode materials. The synthesis process of these material is simple. (b) the development of machine learning platform with quantum accuracy for large scale simulation of complex battery materials. (c) the use of in situ/operando characterizations combined with theoretical calculations to gain the mechanistic insights into the eletrochemcial behavior of anode materials, (d) the cooperation with industry. The proposed organic/inorganic anode materials with higher electrochemical performance and stability will fit in conventional manufacturing processes of practical lithium-ion batteries.

Results and Discussion

CZTS anode materials and pouch cell demonstration

• CZTS

Full cell evaluation					
	正極	正極電容 量	負極	負極電容 量	平均 電壓 (V)
	NMC62 2-SC	126.24 mAh	CZTS	110.15 mAh	3.69

1.05 M LiPF6, EC/DEC-based electrolyte; A/C ratio 0.7~0.9

ک 2.5

.1C/0.1C

1C=100 mA

Capacity (mAh)

SEM image of (a) pristine CZTS and (b-c) CZTS@N-C composites (d) TEM image of CZTS@N-C, (e-f) The HRTEM images of CZTS@N-C composites. (g) The STEM-EDX elemental mapping of CZTS@N-C including dark-field images, Cu, Zn, Sn, S, C and N maps.

1200

(a) CV curves of CZTS@N-C with 0.1 mV/s scan rate and (b) charge-discharge curves of CZTS@N-C at a rate of 1 A/g. (c-d) Electrochemical performance of CZTS, CZTS@N-C and graphite anode materials.

A full cell (NCM622/CZTS) with 60 mAh is obtained in the pouch cell ($57mm \times 61 mm$ size).

Results and Discussion

